Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction

نویسندگان

  • Yingxin Zhao
  • Zhiyang Liu
  • Yuanyuan Wang
  • Hong Wu
  • Shuxue Ding
چکیده

Compressive sensing theory has attracted widespread attention in recent years and sparse signal reconstruction has been widely used in signal processing and communication. This paper addresses the problem of sparse signal recovery especially with non-Gaussian noise. The main contribution of this paper is the proposal of an algorithm where the negentropy and reweighted schemes represent the core of an approach to the solution of the problem. The signal reconstruction problem is formalized as a constrained minimization problem, where the objective function is the sum of a measurement of error statistical characteristic term, the negentropy, and a sparse regularization term, `p-norm, for 0 < p < 1. The `p-norm, however, leads to a non-convex optimization problem which is difficult to solve efficiently. Herein we treat the `p-norm as a serious of weighted `1-norms so that the sub-problems become convex. We propose an optimized algorithm that combines forward-backward splitting. The algorithm is fast and succeeds in exactly recovering sparse signals with Gaussian and non-Gaussian noise. Several numerical experiments and comparisons demonstrate the superiority of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Algorithms for Re-Weighted ℓ1-Norm Minimization

To recover a sparse signal from an underdetermined system, we often solve a constrained `1-norm minimization problem. In many cases, the signal sparsity and the recovery performance can be further improved by replacing the `1 norm with a “weighted” `1 norm. Without any prior information about nonzero elements of the signal, the procedure for selecting weights is iterative in nature. Common appr...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Sparse Recovery of Streaming Signals Using ℓ1-Homotopy

Most of the existing methods for sparse signal recovery assume a static system: the unknown signal is a finite-length vector for which a fixed set of linear measurements and a sparse representation basis are available and an `1-norm minimization program is solved for the reconstruction. However, the same representation and reconstruction framework is not readily applicable in a streaming system...

متن کامل

Optimal incorporation of sparsity information by weighted ℓ1 optimization

Compressed sensing of sparse sources can be improved by incorporating prior knowledge of the source. In this paper we demonstrate a method for optimal selection of weights in weighted l1 norm minimization for a noiseless reconstruction model, and show the improvements in compression that can be achieved.

متن کامل

Algorithmic linear dimension reduction in the l_1 norm for sparse vectors

We can recover approximately a sparse signal with limited noise, i.e, a vector of length d with at least d − m zeros or near-zeros, using little more than m log(d) nonadaptive linear measurements rather than the d measurements needed to recover an arbitrary signal of length d. Several research communities are interested in techniques for measuring and recovering such signals and a variety of ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017